
 VVooll-- 66 •• IIssssuuee--11 SSeepp -- MMaarr 22001155 pppp..115555--115588 aavvaaiillaabbllee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

Page | 155

A Review on Code Clones Detection Techniques for

Software Systems
Jai Bhagwan1

1
Assistant Professor, Department of Computer Science & Engineering, Guru Jambheshwar University

of Science & Technology, Hisar, India

Abstract: An extensive demand for software professional is increasing because industries are

demanding a lot of software systems in order to carry out their work. The professionals are not trained

as per need which causes software crisis. This force to reuse the source code for development and the

reuse process gives birth to the code clones. Code clones are responsible for making complex

software systems and it is difficult to manage these complex systems. So, documentation of clones is

required by using detection algorithms or tools. Various tools and algorithms have been invented

using many techniques like the textual comparison, metrics analysis, token-based process, data-

mining techniques etc. In this paper, various code clones techniques or tools have been analysed in

order to choose better technique for future use and research.

Keywords: Code Clones, Textual Analysis, Metrics, Tokens, Clones Types.

1. Introduction

The demand for software applications are increasing rapidly because of the maximum pieces of works

in all kind of organizations is going to be computerized. The programming professionals required for

this task are not increasing proportionately. In order to overcome this crisis, software professionals

choose reusability concept for software development [8]. This creates a lot of clones in a software

system, due to which software maintenance cost might be increased as code clones make complex to a

system. It requires detecting clones among various software systems and refactoring those clones in

order to reduce the software complexity. So code clone detection is one of the most demanded topics

of research nowadays. A code segment in a source file that is similar or identical to other segment is

called a Code Clone. Due to reusability or copy and paste of code, software code clones come into

existence. Source files become hard to modify due to these clones. The modification can be easily

done with the help of proper documentation of the clones [1]. In order to detect and organize the

clones, various tools have been invented in literature. One of them is the text-based technique which

is lightweight and is capable to detect the clones accurately. But it is not as good to detect syntactic

based clones or units of code. Another token-based technique outperforms with a higher recall rate but

it is lower in case of precision. Parser-based methods of clone detection are good enough to detect

semantic and syntactic clones, but with a lower rate of recall values. Metrics-based techniques

perform well for the detection of semantic as well as syntactic code clones with a good rate of

precision but some of the actual clones cannot be detected using these approaches [3].

1.1 Process of Clones Detection

A clone detection tool or approach can follow the steps shown in figure 1 in order to find out the

clones in software source codes. These steps are described below [12]:

 Pre-processing – This is the first step of detection in which the code is partitioned on the basis

of its development languages. Any uninterested part is also removed in this step.

 Transformation – In this step, the source code is transformed into an intermediate language.

Extraction and normalization are other tasks involved in this step.

 Match Detection – Here, the transformed code is provided to an algorithm in order to find out

the matches.

 Formatting –In this step, the clones’ pair list obtained by comparison algorithm is converted

into a corresponding pair list on the basis of original code.

 Post-processing – In this phase, the clones are filtered by manual or heuristic analysis.

 Aggregation – Clones can be combined in clone classes here in order to reduce the data

amount.

 VVooll-- 66 •• IIssssuuee--11 SSeepp -- MMaarr 22001155 pppp..115555--115588 aavvaaiillaabbllee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

Page | 156

Figure 1. Clone Detection Process

Rest of this research paper coversan overview of existing techniques, evaluation of algorithms,

conclusion, and references.

2. Overview of theExisting Techniques

A lot of techniques have been designed and developed for software systems code clone detection. The

researchers in [1] proposed a novel method for the detection of software code clones using source text

transformation and token comparisons. By these techniques as well as a few optimization methods, a

tool was developed which was named CCFinder to detect the software clones from C, C++, Java, and

COBOL based software projects. The authors in [2] proposed a method for few higher-level clones in

source code based on data-mining method. The tool which was developed using the data-mining

technique was given a name as Clone Miner which was experimented with various case studies. In

[3], the authors have designed a tool named CloneManager for code clone detection that works based

on a LWH (Light Weight Hybrid) technique which is a combination of textual and metrics based

approaches. After experiments with C and Java Projects, the tool detected method-level clones

accurately. The scientists in [4], proposed a new approach which is based on token generation. This

new approach was implemented by developing a tool named Deckard found accurate and scalable

while experimenting with Linux and JDK 7 source codes. The scientists in [5] suggested a practical

solution for higher-level clones’ detection among various files and classes. The authors found clones

effectively and accurately using a Frequent Itemset data-mining based approach. The scientists in [6]

introduced a technique which is a hybrid method of textual and metrics based approaches. The authors

Pre-processing

Source Code

Transformation

(Extraction and Normalization)

Match Detection Algorithm

Post-processing

Aggregation

Filtered Clones

Formatting

 VVooll-- 66 •• IIssssuuee--11 SSeepp -- MMaarr 22001155 pppp..115555--115588 aavvaaiillaabbllee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

Page | 157

found that the designed technique is accurate by extracting and comparing various metrics. In [7], the

authors described that a new method automatic categorization is effective for software archive. It was

found that the function-oriented approach outperformed than object-oriented for software modules

classification. Naïve Bayes technique was found effective in term of Precision and Recall over SVD

based retrieval method. The scientists [9] introduced a hybrid technique for code clone detection that

works on the principal of template conversion and metrics identification. It found by the experiments

that the designed technique performs well than existing techniques and it is less complex too. The

researcher [10] described three algorithms for software clones detection. The author worked using

sub-trees and sequence transformed similarity formula. The authors in [11] designed a technique

which a combination of textual and metrics based methods. The newly designed method worked

better and was less complex. The authors of [12] gave a deep comparison of various effective tools

and techniques in their research paper.

3. Evaluation of Various Approaches

After a literature survey of various research papers, the comparison of existing techniques is shown in

table 1.

Table 1. Evaluation of Existing Approaches for Code Clones Detection

Algorithms/ Methods Techniques Used Parameters Findings

Multilinguistic Token

Based Approach [1]

Text Transformation

Rules, Tokens, Metrics

Analysis

CPU Time,

Memory, Clone

Pairs

CCFinder tool worked

effectively

Data Mining Based

Clone Detection [2]

Data Mining Techniques Structural Clones Scalable Technique

Light Weight Hybrid

Technique [3]

Textual and Metrics

Analysis

Actual Clones,

Detected Clones,

Correctly Detected

Clones, Precision,

Recall

The proposed method

found functional clones

efficiently

Token Based Approach

[4]

Tokens Execution Time,

Clones Quality

The proposed method is

faster than previous one

Frequent Itemset Mining

Based Technique [5]

Tokens Analysis,

Frequent Itemset

Mining, Clusters

Similarity Patterns,

Structural Clones

Found Similarities at

methods, classes and

Files level

Clone Detection using

Textual and Metrics

Analysis [6]

Textual Comparison,

Metrics Analysis

Recall, Precision Average Recall Value

Automatic

Categorization [7]

Function Oriented,

Object Oriented,

Machine Learning

Precision, Recall,

F-Measure

Function Oriented is

better than Object

Oriented Technique,

Naïve Bayes is better

than SVD based

retrieval method

Hybrid Metrics and

Template Conversion

Technique [9]

Metrics and Template

Conversion

Precision, Recall The proposed technique

is accurate in terms of

Precision and Recall

4. Conclusions and Future Scope

Many scientists have designed a lot of techniques for code clone detection at different levels like

methods level, classes’ level, files level etc. In this paper, various clone detection methods or

techniques have been compared and found that clones can be detected using textual analysis, metrics

analysis, tokens comparisons, data-mining and with various other techniques too. A few authors

developed tools like Clone Miner, Clone Manager, CCFinderetc. and found type-1, type-2, type-3 and

type-4 clones with accurate rate and complexity. In the future, a method can be designed either by

extending an existing technique or combination of more than one methods.

 VVooll-- 66 •• IIssssuuee--11 SSeepp -- MMaarr 22001155 pppp..115555--115588 aavvaaiillaabbllee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

Page | 158

References

[1] T. Kamiya, S. Kusumoto and K. Inoue, “CCFinder: A Multilinguistic Token-Based Code

Clone Detection System for Large Scale Source Code,” IEEE Transactions on Software

Engineering, Vol. 28, No. 7, pp. 654-670, 2002.

[2] H. A. Basit and S. Jarzabek, “A Data Mining Approach for Detecting Higher-level Clones in

Software,” IEEE Transactions on Software Engineering, pp. 1-18, 2007.

[3] E. Kodhai and S. Kanmani, “Method-level Code Clone Detection through LWH (Light

Weight Hybrid) Approach,” Journal of Software Engineering Research and Development,

Vol. 2, pp. 1-29, 2014.

[4] Y. Yuan and Y. Guo, “Boreas: An Accurate and Scalable Token-Based Approach to Code

Clone Detection,” ASE 12, Essen, Germany, pp. 286-289, 2012.

[5] H. A. Basit and S. Jarzabek, “Detecting Higher-level Similarity Patterns in Programs,”

European Software Engineering Conference, ACM SIGSOFT, 2005.

[6] E. Kodhai, S. Kanmani and A. Kamatchi, “Detection of Type-1 and Type-2 Code Clones

Using Textual Analysis and Metrics,” Internation Conference on Recent Trends in

Information, Telecommunication and Computing, IEEE, pp. 241-243, 2010.

[7] P. S. Sandhu, M. Bala and H. Singh, “Automatic Categorization of Software Modules,”

International Journal of Computer Science and Network Security, Vol. 7, No. 8, pp. 114-119,

2007.

[8] P. S. Sandhu, J. Singh, H. Singh, “Approaches for Categorization of Reusable Software

Components,” Journal of Computer Science, Vol. 3, No. 5, pp. 266-273, 2007.

[9] G. R. Goda and A. Damodaram, “An Efficient Software Clone Detection System based on the

Textual Comparison of Dynamic Methods and Metrics Computation,” International Journal of

Computer Applications, Vol. 86, No. 6, pp. 41-45, 2014.

[10] K. Greenan, “Method-level Code Clone Detection on Transformed Abstract Syntax Trees

Using Sequence Matching Algorithms,” Department of Computer Science, University of

California, 2005.

[11] E. Kodhai, A. Perumal and S. Kanmani, “Clone Detection using Textual and Metric Analysis

to figure out all Types of Clones,” International Journal of Computer Communication and

Information System, Vol. 2, No. 1, pp. 99-103, 2010.

[12] K. R. Chanchal, J. R. Cordy and R. Koschke, “Comparison and Evaluation of Code Clone

Detection Techniques and Tools: A Qualitative Approach,” Science of Computer

Programming, Elsevier, Vol. 74, pp. 470-495, 2009.

